
www.adlinktech.com
2017

Messaging Technologies for the Industrial Internet and the
Internet of Things Whitepaper

A Comparison Between DDS, AMQP,
MQTT, JMS, REST, CoAP, and XMPP

1

1. Definitions, Acronyms and Abbreviations ……………………….…………………………………… P 2

2. Executive Summary …………………………………………………………………………………. P 4

3. Introduction ………….……………………………………………...…………………………………….. P 5

4. Background ……………………………………………………………………………………………. P 6

5. What Problems Are We Trying to Solve? ……………………………….…………………………….. P 7

6. Message Broker or Data Bus ………………………………………………………………………… P 10

7. Data-Centricity or Message-Centricity ……………………………………………………………… P 12

8. Interoperability ………………...……………………………………………………………………………. P 12

9. Quality of Service ………………………………………………………………………………….... P 13

10. Performance ………………………………………………………………………………………… P 16

11. Security ……………………………………………………………………………………………… P 17

12. Conclusion ……………………………………………………………………………………………… P 18

13 References ……………………………………………………………………………………………… P 21

Notices ……………………………………………………………………………………………………. P 22

Table of Contents

2

1. Definitions, Acronyms and Abbreviations

AMQP
The Advanced Message Queuing Protocol is an open standard application layer protocol for message-

oriented middleware.

CDR

Common Data Representation (CDR) is used to represent structured or primitive data types passed as

arguments or results during remote invocations on Common Object Request Broker Architecture

(CORBA) distributed objects it is also used by the DDSI wire protocol for the representation of DDS data

types.

CoAP
Constrained Application Protocol (CoAP) is a software protocol to be used in very simple electronics

devices that allows them to communicate over the Internet.

DDS

The Data Distribution Service for Real-Time Systems is an Object Management Group (OMG) M2M

middleware standard that aims to enable scalable, real-time, dependable, high performance and

interoperable data exchanges between publishers and subscribers.

IETF

The Internet Engineering Task Force whose goal is to make the Internet work better by producing high

quality, relevant technical documents that influence the way people design, use, and manage the

Internet.

Industrial Internet
The Industrial Internet is the convergence of the global industrial system with the power of advanced

computing, analytics, low-cost sensing and new levels of connectivity permitted by the Internet.

IoT
The Internet Of Things is a world where physical objects are seamlessly integrated into the information

network, and where the physical objects can become active participants in business processes.

JMS
Java Message Service API is a Java Message Oriented Middleware (MOM) API for sending messages

between two or more clients.

Java EE Java Platform, Enterprise Edition is Oracle's enterprise Java computing platform.

MOM
Message-oriented middleware is software or hardware infrastructure supporting sending and receiving

messages between distributed systems.

MQTT

Message Queuing Telemetry Transport is an open message protocol for M2M communications that

enables the transfer of telemetry-style data in the form of messages from pervasive devices, along high

latency or constrained networks, to a server or small message broker.

http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Application_layer
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/Primitive_data_type
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
http://en.wikipedia.org/wiki/Distributed_object
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Machine_to_Machine
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Safety_critical
http://en.wikipedia.org/wiki/Many-task_computing
http://en.wikipedia.org/wiki/Interoperable
http://en.wikipedia.org/wiki/Data_exchange
http://en.wikipedia.org/wiki/Application_Programming_Interface
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Message_Oriented_Middleware
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Machine_to_machine
http://en.wikipedia.org/wiki/Telemetry

3

M2M
Machine to Machine refers to technologies that allow both wireless and wired systems to communicate

with other devices.

Vortex OpenSplice
ADLINK’s Open Source implementation of the Data Distribution Service for Real-Time Systems

standard.

QoS
Quality of Service refers to several related aspects of computer networks that allow the transport of

traffic with special requirements.

REST
Representational state transfer is a style of software architecture for distributed systems such as the

World Wide Web.

XMPP
eXtensible Messaging and Presence Protocol is an XML streaming protocol for instant messaging and

presence technology.

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/World_Wide_Web

4

2. Executive Summary

The most important messaging technologies proposed as the foundation of the next generation of Internet of Things (IoT) and more
specifically the Industrial Internet applications are reviewed in this document. An understanding of both the architecture and the
message/data sharing requirements of each target system is an important pre-requisite for choosing the most appropriate messaging
solution.

AMQP and JMS have been designed to address applications requiring fast and reliable business transactions. JMS is focused on Java-centric
systems although there are a number of vendors who have developed proprietary C and C++ JMS API mappings that can be used with a JMS
broker. As an API standard, JMS cannot guarantee interoperability between producers and consumers using different JMS implementations.

MQTT provides a simple and lightweight device data collection solution, although only partial interoperability between MQTT publishers and
subscribers can be guaranteed. Messages can be exchanged between different MQTT implementations but unless the format of the message
body is agreed between peers, the message cannot be un-marshaled.

REST provides a simple client-server (request/reply) style of communications that is useful for systems that need to communicate over the
Internet, but it cannot provide asynchronous loosely coupled publish-and-subscribe message exchanges. The stateless model supported by
HTTP can simplify server design, however the disadvantage of statelessness is that it may be necessary to include additional information in
every request and this extra information will need to be interpreted by the server. This can be very inefficient is terms of request processing
time and resources consumed (e.g. number of TCP/IP connections).

CoAP was designed to support the connectivity of simple low power electronic devices (e.g. wireless sensors) with Internet based systems. It
can be used for data collection in systems that do not require very high performance, real-time data sharing or real-time device control. In
many cases data is collected for subsequent “offline” processing. A CoAP device is connected to a cloud-based system via a HTTP proxy using
a standard CoAP-HTTP mapping. Using a proxy/bridge adds an additional communication overhead and increases message latency.

XMPP is a protocol based on Extensible Markup Language (XML) that was originally designed for instant messaging (IM) and online presence
detection. The core standards provide a framework for building messaging applications such as multi-party chat, voice and video calls,
collaboration, lightweight middleware, content syndication, and generalized routing of XML data. Although XMPP provides support for
security features such as authentication and message encryption it does not provide any support for the quality of service requirements
typical of Industrial Internet systems. Parsing XML adds additional processing overhead, and an XML parser adds to memory footprint that
can make XMPP unsuitable for use in low power embedded devices.

Choosing AMQP, MQTT, JMS, REST or XMPP for systems where a device needs to fan-out messages to perhaps thousands of other networked
devices can result in poor performance and much complexity (e.g. requiring multi broker/server configurations). CoAP however, supports IP
multicast, enabling a single request to be issued to multiple CoAP devices concurrently.

Unlike DDS, which provides support for dynamic discovery, configuring a system that uses AMQP, MQTT or JMS is through the broker.
Accessing the broker is usually via a well-known network address or a lookup service such as JNDI. If the broker is moved to a different
server then clients must be re-configured to use the address of broker’s new location.

Only DDS can provide the real-time, many-to-many, managed connectivity required by high-performance device-to-device applications. DDS
is also emerging as a key interoperable messaging protocol for connecting real-time device networks to Cloud based Data Centers. Vendor
specific implementations of DDS such as ADLINK’s Vortex OpenSplice can also offer exceptional intra-nodal data sharing performance.

Ensuring that a system is fault-tolerant and secure is a key consideration in an IoT world consisting of potentially many thousands of devices
all exchanging information. Most of the messaging technologies discussed in this document view security as an orthogonal issue to their core
messaging functionality. The leading vendor implementations typically provide proprietary solutions based on tried and tested third party
security technologies such as SSL or TLS. AMQP and XMPP specify the use of SASL to provide a pluggable message authentication interface
and the recently adopted OMG DDS Security Specification will standardize a comprehensive security framework for DDS-based systems.

Finally, it is worth mentioning that in some cases it may make sense (perhaps for legacy reasons) to create a system that uses more than one
messaging technology within the same architecture. In this case, custom mediation schemes or protocol bridges to exchange messages
between clients using different protocols are required. This may not provide the optimal solution but is a common scenario particularly as a
system evolves and there is need to integrate new and legacy applications.

5

3. Introduction

Conceptually the Internet of Things refers to the general idea of things, especially everyday objects that are readable, recognizable, locatable,
addressable, and/or controllable via the Internet; whether via RFID, wireless LAN, wide-area network, or other means. Everyday objects
include not only the electronic devices we encounter every day and not only the products of higher technological development such as
vehicles and equipment, but also things that we do not ordinarily think of as electronic at all - such as food, clothing and shelter, materials,
parts, and subassemblies.

This paper focuses on messaging technologies that are emerging as the most important for the Industrial Internet, a sub-set of the broader
IoT that targets systems composed of thousands of devices connected over real-time machine-to-machine (M2M) networks.

The definition of the Industrial Internet includes two key components:

• The connection of industrial machine sensors and actuators to local processing and to the Internet.

• The onward connection to other important industrial networks that can independently generate value.

The main difference between the consumer/social IoT and the Industrial Internet is in how much value is created. For consumer/social
Internets, the majority of value is created from advertisements. The value created from the Industrial Internet is much greater from the same
amount of data, and has three components:

• The value of increased efficiency of the industrial plant equipment and long-term maintenance and management of the equipment. In
research, this is found to be always above 10% and as high as 25%.

• The value contribution to adjoining Industrial Internet networks, such as balancing short-term positive cash flow against additional
long-term equipment costs such as maintenance.

• The value contribution of disruptive new business models is a wild-card that could, in a few cases, be dramatically high, or in most cases
moderate or zero.

Industrial Internet application domains already using these technologies include: Aerospace and Defense (Air Traffic Control, Combat
Management Systems, Modeling & Simulation, Vetronics), Healthcare (Smart Devices), Transportation (Railway Control Systems, Vehicle
Management), Smart Energy (Large Scale SCADA Systems) and Smart Cities.

There are many different messaging technologies. However, a much smaller subset are emerging as the most important that will power the
future Industrial Internet. These include:

• Object Management Group’s (OMG) Data Distribution Service for Real-Time Systems (DDS).

• OASIS’ Advanced Message Queuing Protocol (AMQP).

• MQ Telemetry Transport (MQTT) a proprietary protocol originally developed by IBM but now an OASIS standard.

• Java Message Service (JMS) an international messaging standard developed through the Java Community Process (JCP).

• Representational State Transfer (REST) a common style of using HTTP for Web-based applications and not a standard.

• Constrained Application Protocol (CoAP) is a software protocol to be used in very simple electronics devices such as Wireless Sensor
Networks (WSN) that allows them to communicate over the Internet.

• eXtensible Messaging and Presence Protocol (XMPP), is the IETF’s formalization of the base XML streaming protocols for instant
messaging and presence technology originally developed within the Jabber open-source community.

This paper compares and contrasts the key architectural features of each messaging paradigm and provides a context for choosing the right
technology to support the requirements for a particular type of system.

6

4. Background

4.1 DDS

The Object Management Group’s DDS standard is a data-centric publish-and-subscribe technology that emerged from the Aerospace and
Defense community to address the data distribution requirements of mission-critical systems. It enables scalable, real-time, reliable, high
performance and interoperable data exchanges between publishers and subscribers. DDS is designed to address the needs of mission and
business-critical applications like financial trading, air traffic control, smart grid management, and other big data applications. It is being
increasingly used in a wide range of Industrial Internet applications.

The DDS specification defines:

• A Data Centric Publish Subscribe (DCPS) layer providing a set of APIs that present a coherent set of standardized “profiles” targeting
real-time information-availability for domains ranging from small-scale embedded control systems right up to large-scale enterprise
information management systems.

• A DDS Interoperability Wire Protocol (DDSI)

• An Extensible and Dynamic Topic Types for DDS standard

DDS is both language and OS independent. The DCPS APIs have been implemented in a range of different programming languages including
Ada, C, C++, C#, Java, JavaScript, CoffeeScript, Scala, Lua, and Ruby. Using standardized APIs helps ensure that DDS applications can be ported
easily between different vendor’s implementations.

DDS also specifies a wire protocol, the DDS Interoperability Wire Protocol [2], referred to as DDSI. A wire-level protocol refers to the
mechanism for transmitting data from point-to-point. A wire protocol is needed if more than one application has to interoperate. In contrast
to protocols at the transport level (like TCP or UDP), the term wire-protocol is used to describe a common way to represent information at
the application level. All DDS implementations complying with DDSI will interoperate. The protocol also supports automatic “Discovery” that
allows DDS participants to declare the information that they can provide or what data they would like to receive, in terms of topic, type and
QoS. The protocol will automatically connect appropriate publishers to subscribers. This significantly simplifies the process of configuring
systems with many nodes and many devices exchanging data.

A recent addition to the DDS standards is the inclusion of a new specification, Extensible and Dynamic Topic Types [8], that defines how
Topic data types can be extended dynamically while ensuring application portability and interoperability.

4.2 AMQP

AMQP is a message-centric protocol that emerged from the financial sector with the aim of freeing users from proprietary and non-
interoperable messaging systems. AMQP mandates the behavior of the messaging provider and client to the extent that implementations
from different vendors are truly interoperable. Previous attempts to standardize middleware have happened at the API level (e.g. JMS) and
thus did not ensure interoperability. Unlike JMS, which merely defines an API, AMQP is a wire-protocol. Consequently, any product that can
create and interpret messages that conform to this data format can interoperate with any other compliant implementation irrespective of the
programming language.

AMQP is a binary, application layer protocol, designed to efficiently support a wide variety of messaging applications and communication
patterns. It provides flow controlled, message-oriented communication with message-delivery guarantees such as at-most-once (where each
message is delivered once or never), at-least-once (where each message is certain to be delivered, but may do so multiple times) and exactly-
once (where the message will always certainly arrive and do so only once), and authentication and/or encryption based on SASL and/or TLS
It assumes an underlying reliable transport layer protocol such as Transmission Control Protocol (TCP).

4.3 MQTT

MQTT is a message-centric wire protocol designed for M2M communications that enables the transfer of telemetry-style data in the form of
messages from devices, along high latency or constrained networks, to a server or small message broker. Devices may range from sensors
and actuators, to mobile phones, embedded systems on vehicles, or laptops and full scale computers. It supports a publish-and-subscribe
style of communication and is extremely simple.

4.4 JMS

JMS is one of the most widely used publish-and-subscribe messaging technologies. It is a message-centric API for sending messages between
two or more clients. JMS is a part of the Java Platform, Enterprise Edition (Java EE), and is defined by a specification [5] developed under the

7

Java Community Process as JSR 914. It is a messaging standard that allows application components based on Java EE to create, send, receive,
and read messages. It allows the communication between different components of a distributed application to be loosely coupled, reliable,
and asynchronous. JMS supports both point-to-point and publish-and-subscribe style routing.

The main limitation of JMS is that it is a Java API standard only and does not define a wire protocol. Therefore JMS implementations from
different vendors will not interoperate.

4.5 REST

REST has emerged as the predominant Web API design model. RESTful style architectures conventionally consist of clients and servers.
Clients initiate requests to servers; servers process requests and return appropriate responses. Requests and responses are built around the
transfer of representations of resources. A resource can be essentially any coherent and meaningful concept that may be addressed. A
representation of a resource is typically a document that captures the current or intended state of a resource.

REST was initially described in the context of HTTP, but it is not limited to that protocol. RESTful architectures may be based on other
Application Layer protocols if they already provide a rich and uniform vocabulary for applications based on the transfer of meaningful
representational state.

4.6 CoAP

CoAP is a document transfer protocol that was designed for use with very simple electronic devices, allowing them to communicate over the
Internet. The Internet Engineering Task Force (IETF) Constrained Restful Environments (CoRE) Working Group is currently working on
standardizing CoAP.

CoAP is targeted for small low power sensors, switches, valves and resource constrained internet devices such as Wireless Sensor Networks
(WSNs) and is designed to easily translate to HTTP for simplified RESTful web integration. CoAP is lightweight, simple and runs over UDP
(not TCP) with support for multicast addressing. It is often used in conjunction with WSNs implementing the IETF’s emerging IPv6 over Low
Power Wireless Personal Area Networks (6LoWPAN) standard. This new standard enables the use of IPv6 in Low-power and Lossy
Networks (LLLNs) such as those based on IEEE 802.15.4.

CoAP supports a client/server programming model based on a RESTful architecture in which resources are server controlled abstractions
made available by an application process and identified by Universal Resource Identifiers (URIs). Clients can manipulate resource using
HTPP: GET, PUT, POST and DELETE methods. It also provides in built support for resource discovery as part of the protocol.

A mapping between CoAP and HTTP is also defined, enabling proxies to be built to provide access to COAP resources in a uniform way via
HTTP.

4.7 XMPP

XMPP is a protocol for streaming XML elements in order to exchange messages and presence information in close to real time. It is a
document transfer protocol that was designed for use with very simple electronic devices such as a mobile phone. It is an extensible that
protocol has also been used to implement instant messaging, lightweight middleware, voice and video calls, file transfer, gaming, social
networking services and IoT applications.

5. What Problems Are We Trying to Solve?

The messaging technologies discussed in this document can be used to connect devices and people (e.g., sensors, mobile devices, single board
computers, micro controllers, desktop computers, local servers, servers in a Data Center) in a distributed network (LAN or WAN) via a range
of wired and wireless communication technologies including: - Ethernet, Wi-Fi, RFID, NFC, Zigbee, Bluetooth, GSM, GPRS, GPS, 3G, 4G).

The problem has a number of variations that can be categorized as follows:

• Inter Device communication - message exchanges between device nodes on a Local Area Network (LAN)

• Device to Cloud communication - message exchanges between a device node and an Internet based Data Center or between devices via
the Internet

• Inter Data Center communication - message exchanges between Internet based Data Centers

8

• Intra Device communication where messages are exchanges between processes within the same device node, although this is not
generally considered an IoT use case

Each messaging technology discussed in this document is suited to addressing one, more or all of the connectivity problems identified above
and illustrated in Figure 1.

AMQP, MQTT, JMS, REST and XMPP were all designed to run on networks that use TCP/IP as the underlying transport. AMQP, MQTT and JMS

support brokered publish-and-subscribe message exchanges between device nodes (Inter Device). JMS is focused on Java-centric systems

although there are a number of vendors who have developed proprietary C and C++ JMS API mappings and that can be used with a JMS

provider. REST encourages a client-server (request/reply) pattern of inter nodal communication using HTTP. XMPP client device nodes can

communicate with each other asynchronously using TCP/IP via an XMPP server, which is an intermediary component (other protocols refer

to this component as a broker) that provides routing between sending and receiving clients.

COAP is also based on a RESTful architecture and a client/server interaction pattern. It uses UDP as the underlying transport and can also

support IP multicast addressing to enable group communications between devices. CoAP was designed to minimize message overhead and

reduce fragmentation when compared to a HTTP message. When used with UDP the entire message must fit within a single datagram or a

single IEEE 802.15.4 frame when used with 6LoWPAN.

Figure 1 –IoT Connectivity Problem Space

9

AMQP, MQTT and JMS use a broker to route messages between publishers and subscribers. They can encounter similar issues with respect to

reduced performance (latency increases, throughput drops) and real-time predictability as system scale increases (when the number of

publishers, subscribers and nodes grow).

XMPP provides a general framework for messaging across a network and is commonly used to support asynchronous message exchanges

between clients on a network. XMPP has a decentralized architecture with each client connecting to a local server in its domain.

Communication across domains is achieved via server-server federation.

DDS was designed to support large scale, real-time data sharing between devices on a network. It is used in many mission critical systems

with large device-to-device data exchanges requiring efficient, predictable, low latency and reliable data sharing. It can be used with either

reliable or unreliable networks. Communication reliability is provided by the DDSI wire protocol itself and not dependent on the physical

transport. By default DDS uses UDP as its underlying transport but other transports can also be supported (e.g., IP multicast, TCP/IP, shared

memory, etc.). DDS is language and OS independent and can run on very small embedded devices (e.g. a simple wireless sensor) up to large-

scale enterprise systems.

DDS provides a decentralized broker-less (see section 6) architecture with direct peer-to-peer communications between publishers and

subscribers. DDS comprehensive Quality-of-Service (QoS) support allows users to fine-tune and prioritize data exchanges to ensure

maximum throughput and reduce CPU utilization and maximize network bandwidth.

All of the protocols can support distributed message exchanges between processes on a single node (Intra Device). In the case of AMQP,

MQTT, JMS, REST and XMPP they are required to use a reliable transport such as TCP/IP, or UDP in the case of DDS and CoAP. However, CoAP

, REST and XMPP were not designed for high performance message exchanges within the same node and are more appropriate when used to

communicate between nodes or with Internet based applications.

By design DDS’s connectionless architecture scales better than the other protocols when the number of applications on the node producing

and consuming the data increases. ADLINK’s Vortex OpenSplice DDS provides a ‘federated’ deployment option where multiple applications

on a computer share information via shared memory and where network-traffic to/from that federation is arbitrated by a unique network-

scheduler based upon urgency and importance of each exchanged piece of information. This shared-memory based deployment architecture

features ultra-low latency inter-core communication along with extreme nodal scalability. This results in better scalability, more efficient

data-sharing and better peer-to-peer determinism on the same and between nodes.

AMQP, MQTT and JMS can provide device to Data Center connectivity over the Internet using TCP/IP connections to brokers deployed in the

Data Center. RESTful applications can implement request/reply message exchanges from a client to a server in a Data Center using HTTP.

Again, JMS restricts this type of configuration to applications written for the Java platform, which can rule out its use in very resource

constrained environments. AMQP, MQTT and CoAP do not define a language specific API for using the protocol and vendors are free to

provide implementations that can support a number of different languages (e.g. Java, C++, C, C#, others). For example, if a resource

constrained embedded network device needs to publish a message (perhaps containing alarm information) to a management application

running in a Cloud-based Data Center, it usually makes more sense if a publisher application running on the device is written in C and not

Java in order to minimize its memory footprint.

CoAP nodes are designed to provide device to Data Center connectivity via HTTP proxies using a standard mapping.

XMPP clients can communicate with XMPP servers hosted in a data center using TCP/IP connections. In addition, an extension (draft) [12] to

the core XMPP standard to allow the protocol to be used with HTTP connections is also available. Due to its decentralized architecture XMPP

servers can be federated between data centers if required. XMPP supports a wide variety of programming and scripting languages such as

Java, C++, C, C#, Erlang, Lisp, Ruby, Perl, Python and TCL.

As the name suggests MQTT (Message Queuing Telemetry Transport) targets device data collection. Its purpose is to collect data from many

devices and transport that data to a Data Center. When the role of the Data Center is simply to collect and process data without the need for

real-time data sharing or other QoS requirements then both MQTT and CoAP are useful protocols as they are both very lightweight and can

run on the smallest resource constrained device (e.g. low power wireless sensor network), while at the same time providing connectivity to

Internet based applications.

10

Due to computing and platform (e.g. Java for JMS) resources required to host them, AMQP, JMS and REST applications are better suited to

support message exchanges between applications running on servers on a LAN or in a Data Center or between Data Centers over the Internet

and not severely resource constrained embedded environments. Both REST/HTTP and XMPP clients can support simple messaging

applications running on mobile devices such as a smart phone or tablet.

By default, compliant DDS implementations must support UDP as the underlying transport used by the DDSI wire protocol. However, a

number of vendors also support DDSI implementations that can also use TCP/IP (e.g. ADLINK’s Vortex OpenSplice DDS), enabling Data

Center connectivity over the Internet. DDS has the advantage that it can support low latency, real-time data sharing regardless of location.

This includes device-to-device data exchanges (including over the Internet) and large fan-outs where one device publishes data that is

consumed by many subscriber devices or even other Data Centers. Lightweight DDS implementations can support the most resource

constrained environments with API support available in a range of different programming languages.

6. Message Broker or Data Bus

The majority of implementations of AMQP, MQTT, JMS and XMPP are broker-based (see Figure 2). Publishers post messages to a trusted

message routing and delivery service, or broker (the XMPP standard refers to this component as a server), and subscribers register

subscriptions with the broker which also performs any message filtering. The broker normally performs a store and forward function to

route messages from publishers to subscribers. In addition, the broker may prioritize messages in a queue before routing. Subscribers may

register for specific messages at build time, initialization time or runtime.

Figure 2 – Message Broker Architecture

Brokers may have a single queue, multiple queues with messages distributed amongst them, copies of each message duplicated in each queue

or some other kind of delivery pattern. Flexible routing patterns are a benefit of using a broker. Originating from the financial sector in which

message exchanges are frequently transactional, both AMQP and JMS provide transactional modes of operation that allow them to take part

in a multi-phase commit sequence. MQTT and AMQP brokers support communications between publishers and subscribers over TCP/IP to

provide reliable communications. XMPP clients communicate with servers and other clients also over TCP/IP, although XMPP provides no

reliability guarantees. Most JMS brokers are also TCP-based although this is not mandated by the standard.

Brokers can be deployed in various configurations in a networked environment to suit specific system needs. Common broker configurations

include:

11

• Centralized broker – where the broker resides on a single centralized server and all traffic flows via the server. This model is easy to

implement and administer and requires the fewest number of network connections. However, the broker can become a single point of

failure, or a bottle neck, it doesn’t scale and in a real-time system is not predictable.

• Centralized multi broker – in this configuration each queue or topic is hosted on a different server. This model is more complicated to

implement, but allows the number of queue and topics to scale better. More client connections are potentially needed and each

individual broker becomes a single point of failure. When many publishers or subscribers are talking to the same queue scalability can

become an issue. With this configuration, load balancing can be implemented by federating topics or queues over a number of brokers.

• De-centralized broker – most decentralized architectures currently use IP multicast at the network level. A messaging system based on

multicasting has no centralized message server. Some of the server functionality, such as persistence, security, and transactions is

embedded as a local part of the client, while message routing is delegated to the network layer by using the IP multicast protocol. A de-

centralized brokered model is typically a hybrid architecture in that a publisher or subscriber first connects to a daemon process using

TCP/IP, which in turn communicates with other broker processes using IP multicast groups. This model can scale to large numbers of

queues, with low numbers of connections while reducing the single points of failure. However, it offers the worst latency and real-time

predictability compared to other models.

MQTT, AMQP and JMS do not provide automatic discovery, unlike DDS, this means that configuring a distributed system that uses one of

these technologies is through the broker. Publishers and subscribers exchange messages through well know named queues (and topics in the

case of JMS) and broker/server addresses. In the case of JMS an initial reference to a JMS broker (provider) is usually retrieved from a lookup

service such as the Java Naming and Directory Interface (JNDI). XMPP defines a protocol extension [13] for discovering information about

other XMPP entities. Two kinds of information can be discovered: (1) the identity and capabilities of an entity, including the protocols and

features it supports; and (2) the items associated with an entity, such as the list of rooms hosted at a multi-user chat service.

DDS supports a decentralized broker-less architecture to enable seamless data sharing between producers and consumers. DDS is based on

the idea of a virtual “global data space” where producers write to the data space and consumers read from the data space. A data model

consisting of named topics, their user defined data types and associated QoS is used to by the DDS infrastructure to control how data is

shared. DDS connects producers to consumers over the data bus as shown in Figure

DDS provides a dynamic discovery mechanism to automatically match DataReaders and DataWriters. DDS can run over many transports

including TCP/IP, UDP (unicast or multicast), shared memory or any other specialist transport. It does not rely on the underlying transport

for reliability as this is provided by the DDSI wire protocol. It is worth noting that there are DDS designs that are also brokered but these are

the exceptions and are not usually optimal for most use cases.

Figure 3 – DDS Data Bus Architecture

12

7. Data-Centricity or Message-Centricity

AMQP, MQTT, JMS, REST, CoAP and XMPP are all message-centric technologies. DDS on the other hand is a data-centric technology. They both

can do similar things with respect to providing connectivity in a distributed system, however the way they do it is quite different. In a

message-centric system the focus is on delivery of the message itself regardless of the data payload it contains and the infrastructure's role is

to ensure that messages get to their intended recipients.

In a data-centric system the focus is on user defined data (the data model). The unit of exchange in this type of system is a data value. The

middleware understands the context of the data and ensures that all interested subscribers have a correct and consistent view of the data.

This is similar in concept to a database that can provide a global view (see Figure 4) of the data and can manage its access.

One of the key advantages of data-centric technology like DDS is that the data sharing provides a much higher level of abstraction for users of

the technology. Data is something that users understand since it represents something in their domain. Message-centric systems on the other

hand provide a lower level abstraction as it requires users to implement data sharing through the exchange of messages. A data-centric

system is therefore easier to maintain and extend, enabling users to focus on developing their business logic and not on writing message

handling logic. DDS was designed to support complex systems, inherently providing excellent scalability, fan-out characteristics and state

management capabilities. In data-centric based system applications interact with the data model and not directly with each other. This helps

to reduce coupling and enables the system to evolve much more easily and dynamically.

8. Interoperability

DDS enables interoperable data sharing and specifies the DDSI [2] wire protocol to exchange messages between publishers and subscribers.
The protocol defines a standard data representation format based on an extension to CDR (Common Data Representation) rules. DDS
implementations that support DDSI are fully interoperable. Messages can be exchanged and understood by different DDS implementations
providing that they comply with DDSI standard.

MQTT is a wire protocol focused on the interoperable exchange of messages and was designed to be open, simple, lightweight and easy to
implement. These characteristics make it ideal for use in constrained environments. For example, where the network is expensive, has low
bandwidth or is unreliable or when run on an embedded device with limited processor or memory resources. MQTT is a messaging transport
that is agnostic to the content of the payload. It does not specify the layout or how data is represented in a message. Although publishers and
subscribers can exchange messages, applications must agree on a serialization scheme otherwise the messages cannot be understood. In

Figure 4 – DDS Global Data Space

13

large scale distributed systems this can be difficult and costly to implement. MQTT was designed to be used with TCP/IP.

Where JMS provides a standard messaging API for the Java Platform, AMQP provides a standard message protocol across all platforms. Like
MQTT, AMQP does not provide a specification for an industry standard API although there is now some work to define standard mappings
between the AMQP protocol and common programming APIs (e.g. JMS). It does however provide a specification for a standard wire protocol
to describe how the messages should be structured and sent across the network.

AMQP messages have a payload (the data that they carry), which AMQP brokers treat as an opaque byte array. The broker will not inspect or
modify the payload. It is possible for messages to contain only attributes and no payload. It is common to use serialization formats like JSON,
Thrift, Protocol Buffers and MessagePack to serialize structured data in order to publish it as the message payload. AMQP peers typically use
the "content-type" and "content-encoding" fields to communicate this information, but this is by convention only. This means that although
publishers and subscribers can exchange messages unless the data serialization scheme is understood by both parties the data payload
cannot be interpreted. One option here is to use the AMQP type system to send structured, self-describing data.

JMS provides a standard messaging API for the Java platform. With JMS you can replace a JMS-compliant message broker with another
implementation with few or no changes to your source code (usually configuration changes are needed). It also allows for interoperability
between other Java Platform languages such as Scala and Groovy and provides a level of abstraction that frees you from having to worry
about specific vendor’s wire protocols and different JMS brokers. JMS does not provide a standard for interoperability outside of the Java
platform or between other languages.

RESTful clients and servers based on HTTP are interoperable, since all that is needed to support message exchanges is an HTTP stack (either
on the client or the server). Almost every platform and device has that today so interoperability is not a problem.

Like HTTP, CoAP also supports content negotiation. Clients can express a preferred representation of a resource and servers can inform the
clients what they will receive (Content-Type). This allows clients and servers to evolve independently, adding new representations
independently without affecting each other.

XMPP supports interoperability between different client and server implementations. The protocol uses TCP/IP sockets to send and receive
XML messages. XMPP supports asynchronous communication using XML streams and stanzas. An XML stream encapsulates an envelope of
communication between two entities. A stanza contains XML messages in the form of a text string and also presence information (e.g. I’m
available or I’m busy). XMPP clients and servers are interoperable and can exchange messages without providing semantic meaning for the
data they are exchanging. Similar to MQTT, message payload encoding is considered an application level issue.

9. Quality of Service

DDS provides an extremely rich set of Quality of Service (QoS) Policies to control the flow of data through the system. There are over 20+ QoS

defined by the standard [1] that can be used to control reliability, volatility, liveliness, resource utilization, filtering and delivery, ownership,

redundancy, timing deadlines and latency of the data. Table 1 below lists the comprehensive set of QoS Policies and their purpose that are

provided by DDS.

QoS Policy Applicability RxO* Modifiable Description

DURABILITY T, DR, DW Y N Controls how data will be stored. Values of TRANSIENT and PERSISTENT
result in data outliving the DataWriter.

D
at

a
A

va
il

ab
il

it
y

DURABILITY

SERVICE
T, DW N N This QoS configures how much data is stored after it is published.

LIFESPAN T, DW - Y Setting an expiration time will ensure that a receiving application will not
receive values that are too old.

14

QoS Policy Applicability RxO* Modifiable Description

HISTORY T, DR, DW Controls the storing of values before they are delivered.

WRITER_DAT

A_LIFECYCLE
DW - Y This policy controls the behavior of the DataWriter with regards to the

lifecycle of the data-instances it manages.

READER_DAT

A_LIFECYCLE
DR - Y This policy controls the behavior of the DataReader with regards to the

lifecycle of the data-instances it manages.

PRESENTATIO

N
P, S Y N Controls the extent to which changes to data-instances can be made

dependent on each other

D
at

a
D

el
iv

er
y

RELIABILITY T, DR, DW Y N This policy indicates the level of reliability requested by a DataReader or
offered by a DataWriter. BEST_EFFORT being lower than RELIABLE.

PARTITION P, S N Y This policy allows the introduction of a logical partition concept inside the
‘physical’ partition induced by a domain.

DESTINATION

ORDER
T, DR, DW Y N

This policy controls how each subscriber resolves the final value of a data
instance that is written by multiple DataWriter objects (which may be
associated with different Publisher objects) running on different nodes

OWNERSHIP T, DR, DW Y N
This policy controls whether the Service allows multiple DataWriter
objects to update the same instance (identified by Topic + key) of a data-
object.

OWNERSHIP

STRENGTH
DW - Y The value of the OWNERSHIP_STRENGTH is used to determine the

ownership of a data-instance (identified by the key).

DEADLINE T, DR, DW Y Y

This policy is useful for cases where a Topic is expected to have each
instance updated periodically. On the publishing side this setting
establishes a contract that the application must meet. On the subscribing
side the setting establishes a minimum requirement for the remote
publishers that are expected to supply the data values.

D
at

a
T

im
el

in
es

s

LATENCY

BUDGET
T, DR, DW Y Y This policy provides a means for the application to indicate to the

middleware the “urgency” of the data-communication

TRANSPORT

PRIORITY
T, DW - Y The purpose of this QoS is to allow the application to take advantage of

transports capable of sending messages with different priorities

TIME BASED

FILTER
DR - Y

This policy allows a DataReader to indicate that it does not necessarily
want to see all values of each instance published under the Topic. Rather,
it wants to see at most one change every minimum_separation period.

R
es

o
u

rc
es

RESOURCE

LIMITS
T, DR, DW N N This policy controls the resources that the Service can use in order to

meet the requirements imposed by the application and other QoS settings.

USER_DATA DP, DR, DW N Y

The purpose of this QoS is to allow the application to attach additional
information to the created Entity objects such that when a remote
application discovers their existence it can access that information and
use it for its own purposes.

C
o

n
fi

g
u

ra
ti

o
n

15

QoS Policy Applicability RxO* Modifiable Description

TOPIC_DATA T N Y

The purpose of this QoS is to allow the application to attach additional
information to the created Topic such that when a remote application
discovers their existence it can examine the information and use it in an
application-defined way

GROUP_DATA P, S N Y The purpose of this QoS is to allow the application to attach additional
information to the created Publisher or Subscriber.

ENTITY
FACTORY

DPF, DP, P, S N Y
This policy controls the behavior of the Entity as a factory for other
entities.

LIVELINESS T, DR, DW Y N
This policy controls the mechanism and parameters used by the Service to
ensure that particular entities on the network are still “alive.”

System
Availability

*RxO indicates that QoS Policy objects need to be set in a compatible manner between the publisher and subscriber ends
T=Topic, DW=Data Writer, DR=Data Reader, P=Publisher, S=Subscriber, DP=Domain Participant, DPF = Domain Participant Factory

Table 1 – DDS QoS Policies

Data objects in a DDS system are identified by Topics as shown in Figure 5. When a DataReader's Topic is compatible with a DataWriter's
Topic, then the "publication" and "subscription" become associated and data is published between them. Topics are compatible when they
have the same name, the same data type and the QoS polices are not in conflict. The Topic, DataReader, DataWriter, Publisher, and Subscriber
all have QoS polices. The QoS policies of Publisher, DataWriter, and Topic control the data on the sending side. QoS policies of Subscriber,
DataReader, and Topic control the data on the receiving side.

DDS QoS Policies provide an extremely powerful and flexible mechanism that can be used to provide per-stream optimization of data flows.

The MQTT protocol provides very basic QoS support for delivering messages between clients and servers. QoS is an attribute of an individual
MQTT message being published. An application sets the QoS for a specific message by setting the MQTTClient_message.qos field to the
required value. A subscribing client can set the maximum quality of service a server uses to send messages that match the client
subscriptions. The MQTTClient_subscribe() and MQTTClient_subscribeMany() functions set this maximum. The QoS of a message forwarded
to a subscriber might be different to the QoS given to the message by the original publisher. The lower of the two values is used to forward a
message.

The three QoS settings provided by MQTT are:

• At-most-once - the message is delivered at most once, or it may not be delivered at all. Its delivery across the network is not
acknowledged. The message is not stored. The message could be lost if the client is disconnected, or if the server fails. It is the fastest
mode of transfer. It is sometimes called "fire and forget". The MQTT protocol does not require servers to forward publications to a
client. If the client is disconnected at the time the server receives the publication, the publication might be discarded, depending on the
server implementation.

• At-least-once - the message is always delivered at least once. It might be delivered multiple times if there is a failure before an
acknowledgment is received by the sender. The message must be stored locally at the sender, until the sender receives confirmation
that the message has been received by the intended recipient. The message is stored in case the message must be sent again.

Figure 5 – DDS Topic Name, Type and QoS Relationships

16

• Exactly-once - the message is always delivered exactly once. The message must be stored locally at the sender, until the sender receives
confirmation that the message that the message has been received by the intended recipient. The message is stored in case the message
must be sent again. It is the safest, but slowest mode of transfer. A more sophisticated handshaking and acknowledgement sequence is
used to ensure no duplication of messages occurs.

JMS messages have a number of QoS properties that can be set. These QoS properties include the following:

• JMSDeliveryMode - there are two types of delivery modes in JMS: persistent and non-persistent. A persistent message should be
delivered once-and-only-once, which means that a message is not lost if the JMS provider fails, it will be delivered after the server
recovers. A non-persistent message is delivered at-most-once, which means that it can be lost and never delivered if the JMS provider
fails. In both persistent and non-persistent delivery modes, the message server should not send a message to the same consumer more
than once, but it is possible. In general, non-persistent messages perform better than persistent messages. They are delivered more
quickly and require less system resources on the message server. However, non-persistent messages should only be used when a loss of
messages due to a JMS provider failure is not an issue.

• JMSExpiration - a message object can have an expiration date. The expiration date is useful for messages that are only relevant for a

fixed amount of time. The expiration time for messages is set in milliseconds by the producer using the setTimeToLive() method on

either the QueueSender or TopicPublisher. The JMSExpiration is the date and time that the message will expire. JMS clients should be

written to discard any unprocessed messages that have expired, because the data and event communicated by the message is no longer

valid. Message providers (servers) are also expected to discard any undelivered messages that expire while in their queues and topics.

Even persistent messages are supposed to be discarded if they expire before being delivered.

• JMSPriorityPurpose - messages may be assigned a priority by the message producer when they are delivered. The message servers may

use a message’s priority to order delivery of messages to consumers; messages with a higher priority are delivered ahead of lower

priority messages

AMQP messages have similar QoS properties to MQTT. This includes supporting message queuing and delivery semantics covering at-most-

once, at-least-once and once-and-only-once (reliable messaging).

REST quality of service is provided by the underlying transport. HTTP is an application layer protocol designed within the framework of the

Internet Protocol Suite. Its definition presumes an underlying and reliable transport layer protocol and TCP/IP is most commonly used.

However, HTTP can use unreliable protocols such as the User Datagram Protocol (UDP), for example in Simple Service Discovery Protocol

(SSDP).

CoAP provides only rudimentary message delivery QoS. CoAP requests and reply messages may be marked as “confirmable” or

“nonconfirmable”. Confirmable messages must be acknowledged by the receiver with an ACK packet. Nonconfirmable messages are “fire and

forget”.

XMPP provides no explicit support for quality of service and reliable delivery of messages has to be built on-top of the XMPP layer. This can

be done using simple sequence number attributes in stanzas.

10. Performance

In a very simple point-to-point configuration between nodes AMQP, MQTT, JMS, REST/HTTP, CoAP and DDS may have comparable

performance characteristics, although broker-based routing adds an additional overhead when compared to a broker-less infrastructure

such as DDS, HTTP or CoAP.

By deploying more instances of the broker and by federating queues across brokers, increased message throughput and scalability can be

achieved. However, this comes at the expenses of potentially more network connections and the introduction of additional points for failure.

Requests to a CoAP resource from HTTP client have the additional overhead of having to be forwarded via a CoAP/HTTP proxy. CoAP should

only be considered where low latency and real-time performance are not a requirement. CoAP’s support for IP multicast does mean that a

17

single CoAP client can issue the same request to multiple CoAP servers concurrently (e.g. a single request could be issued to multiple wireless

devices to turn off all of lights in a street at once). CoAP also has the ability to observe a resource. When an observe flag is set on a GET

request the server can continue to reply after the initial document transfer, allowing state changes to be streamed to a client as they occur.

When DDS is deployed on a LAN, communication between publishers and subscribers will be over UDP multicast and combined with a rich

and flexible set of QoS polices enables exceptional “fan-out” scalability. DDS implementations can reliably scale to tens of 1000s of

messages/sec per peer on networks consisting of thousands of devices (see: http://ist.adlinktech.com/vortex). In a real-time system where

latency is measured in micro seconds and predictable data delivery is key requirement only DDS out of the messaging technologies discussed

in this document can provide the timing control necessary for these types of system.

In certain types of non-real-time systems such as Business-to-Business (B2B), Business-To-Consumer (B2C) or Financial applications,

message throughput may not be the overriding concern when compared to the need for reliable transactional message delivery. In these

cases AMQP and JMS implementations have distinct advantages.

XMPP is not considered a high performance protocol relative to other technologies discussed in this document. XML is text based so XMPP

has a higher network and processing overhead compared to binary protocols. As with the other broker-based protocols, routing messages

via an XMPP server also adds additional overhead when compared to a peer-to-peer protocol such as DDS. In high performance Industrial

Internet systems where low message latency and high throughput, combined with reliable and predictable data delivery are requirements

then XMPP is not suitable.

11. Security

In order to build a trusted and fault-tolerant system in a connected IoT world security issues must be considered. These include how to

protect communications, how to manage authentication and access control to resources in systems that may consist of thousands of devices

and how to ensure integrity and confidentiality of the data in the system.

JMS does not provide an API for controlling the privacy and integrity of messages. It also does not specify how digital signatures or keys are

distributed to clients. Security is considered an issue for specific to each JMS provider. The main JMS vendors provide various levels of

proprietary security functionality within their implementations. Typically, this involves providing facilities to support client authentication

and access control to JMS queues and topics. Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) which are

cryptographic protocols are often used to provide communication security. They use asymmetric cryptography for authentication of key

exchange, symmetric encryption for confidentiality and message authentication codes for message integrity. In a number of the leading JMS

implementations the Java Authentication and Authorization Service (JAAS) is used to provide pluggable authentication and authorization

support for the provider.

As of MQTT v3.1, a user name and password can be passed in an MQTT packet. This can help simplify the authentication of individual clients

in a system by reducing the number of keys that need to be distributed and managed in comparison to an exclusively key based system.

Encryption of data exchanged across the network can be handled independently from the MQTT protocol using SSL or TLS.

With AMQP, security layers are expected to be defined externally to the AMQP specification, for example the use of TLS for data encryption.

The exception to this is the use of the Simple Authentication Security Layer (SASL) which is specified by the standard and can be used to

enable application protocols such as AMQP to negotiate an agreed authentication mechanism.

The OMG DDS Security Specification defines the Security Model and Service Plugin Interface (SPI) architecture for compliant DDS

implementations. The DDS Security Model is enforced by the invocation of these SPIs by the DDS implementation. The specification also

defines a set of built-in implementations of these SPIs.

18

• The specified built-in SPI implementations enable both out-of-the box security and interoperability between compliant DDS

applications.

• The use of SPIs allows DDS users to customize the behavior and technologies that the DDS implementations use for Information

Assurance, specifically allowing customization of Authentication, Access Control, Encryption, Message Authentication, Digital Signing,

Logging and Data Tagging.

In a RESTful system securing message exchanges over HTTP is typically over SSL. Referred to as HTTPS, HTTP was the first protocol to use

SSL. HTTP can also be used with newer TLS implementations. Both SSL and TLS provide HTTP client and servers with asymmetric

cryptography for authentication of key exchange and symmetric encryption for confidentiality.

CoAP is built on top of UDP and as such it cannot rely on SSL/TLS (available with TCP/IP) to provide security capabilities. In the case of UDP,

Datagram Transport Layer Security (DTLS) provides the same assurances as TCP but for message exchanges over UDP.

A number of security features have been built into the core XMPP specifications. Specifically, a connection is authenticated with Simple

Authentication and Security Layer (SASL) and encrypted with Transport Layer Security (TLS).

12. Conclusion

A number of key messaging technologies are emerging that will support the next generation of IoT applications. The messaging technologies

discussed in this document include DDS, MQTT, AMQP, JMS, REST, CoAP and XMPP each of which can be used to connect devices in a

distributed network. However, their suitability to support the different operational scenarios considered, including Inter and Intra Device

communication, Device to Cloud communication and Inter Data Center communication varies, especially when key system requirements such

as performance, quality of service, interoperability, fault tolerance and security are taken into account.

For device-to-device applications that require high performance, real-time, many-to-many managed connectivity then DDS has distinct

advantages over the other messaging technologies. DDS is also emerging as a key enabler for connecting real-time device networks to cloud-

based Data Centers.

The choice of the most appropriate messaging solution should be based on an understanding of both the architecture and the message/data

sharing requirements for each target system. A summary of the key criteria considered in this document is shown below in Table 2.

DDS MQTT AMQP JMS REST/HTPP CoAP XMPP

Abstraction Pub/Sub Pub/Sub P2P or Pub/Sub P2P or Pub/Sub Request/Reply

Request/

Reply

P2P or

Pub/Sub

(based on draft

spec/ XEP-

0060)

Implementation

Architecture
Global Data

Space

Brokered (most

common)

Brokered (most

common)

Brokered (most

common)
Client-Server Client-Server

XMPP Server

(broker)

http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Transport_Layer_Security

19

DDS MQTT AMQP JMS REST/HTPP CoAP XMPP

User

configurable

QoS

22 3 3 3 None

Confirmable or

non-

confirmable

messages

None

Interoperability Yes Partial Yes No Yes Yes Yes

Hard Real-time Yes No No No No No No

Transports

UDP by default

but other

transports such

as TCP can also

be used

TCP TCP
Not specified but

typically TCP
TCP UDP TCP

Subscription

Control

Partitions,

Topics with

message

filtering

Topics with

hierarchical

matching

Exchanges,

Queues and

Bindings in v0.9.1

standard, Queues

and message

filtering in v1.0

standard

Topics and Queues

with message

filtering

N/A

Provides

support for

Multicast

addressing

Nodes which

are analogous

to a Topic

defined In draft

spec XEP-0060

Data

Serialization
CDR Undefined

AMQP type

system or user

defined

Undefined No Configurable XML

Standards
OMG’s RTPS and

DDSI standards

Proposed OASIS

MQTT standard M
OASIS AMQP JCP JMS standard

Is an architectural

style rather than a

standard

Proposed IETF

CoAP standard

XMPP

Standards

Foundation

Encoding Binary Binary Binary Binary

Plain Text, also

supports various

types of content

encoding e.g. ZIP,

compress, deflate

Binary Plain Text

Licensing Model

Open Source &

Commercially

Licensed

Open Source &

Commercially

Licensed

Open Source &

Commercially

Licensed

Open Source &

Commercially

Licensed

HTTP available for

free on most

platforms

Open Source &

Commercially

Licensed

Open Source &

Commercially

Licensed

Dynamic

Discovery
Yes No No No No Yes Yes

20

DDS MQTT AMQP JMS REST/HTPP CoAP XMPP

Mobile devices

(Android, iOS)
Yes Yes Yes

Dependent on JAVA

capabilities of the

OS

Yes Via HTTP proxy Yes

6LoWPAN

devices
Yes Yes

Implementation

specific

Implementation

specific
Yes Yes No

Multi-phase

Transactions
No No Yes Yes No No No

Security

Vendor specific
but typically
based on SSL or
TLS with
proprietary
access control

Simple
Username/Passw
ord
Authentication,
SSL for data
encryption

SASL
authentication,
TLS for data
encryption

Vendor specific but
typically based on
SSL or TLS.
Commonly used
with JAAS API

Typically based on
SSL or TLS

DTLS TLS and SASL

Table 2 – Summary of Key Comparison Criteria

21

13. References

1. Data Distribution Service for Real-Time Systems Version 1.2, OMG Available specification formal/07-01-01

2. The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification Version 2.1, OMG Document Number:

formal/2009-01-05

3. MQ Telemetry Transport (MQTT) Specification v3.1, IBM, Eurotech

4. Advanced Message Queuing Protocol (AMQP) Version 1.0 Specification, OASIS

5. Java Message Service, Nigel Deakin, Oracle, Version 2.0, March 2013

6. Constrained Application Protocol (CoAP) draft-ietf-core-CoAP-18, June 28, 2013

7. MQTT For Sensor Networks (MQTT-S) Protocol Specification, Version 1.2, June 6, 2011

8. Extensible and Dynamic Topic Types for DDS, Version 1.0 OMG Document Number: formal/2012-11-10

9. Extensible Messaging and Presence Protocol (XMPP): Core, RFC 6120, March 2011

10. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence, RFC 6121, March 2011

11. Extensible Messaging and Presence Protocol (XMPP): XEP-0060: Publish-Subscribe (draft specification), July 2010

12. Extensible Messaging and Presence Protocol (XMPP): XEP-0124: Bidirectional-streams Over Synchronous HTTP (draft specification),

April 2014

13. Extensible Messaging and Presence Protocol (XMPP): XEP-0030: Service Discovery, June 2008

14. DDS Security Specification , FTF Beta 1, OMG Document Number: ptc/2014-06-01

Notices

© 2019 ADLINK. All rights reserved. This document may be reproduced in whole but not in part. The information

contained in this document is subject to change without notice and is made available in good faith without liability on the

part of ADLINK Corporation. All trademarks acknowledged.

Web: www.adlinktech.com

Email: ist_info@adlinktech.com

